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NOTE

Pointed Taylor Bubble Revisited

1. INTRODUCTION unique pointed bubble. Our convergence studies show that
this unique pointed bubble rises at a speed S p 0.35784,

The Taylor bubble problem consists of two fluids: a gas accurate up to four decimal places. This is consistent with
of negligible density in the interior of the bubble and an the result of Vanden-Broeck [9] except that our estimate
incompressible nonviscous fluid in the exterior of the bub- of the speed differs from Vanden-Broeck’s in the fourth
ble. The bubble is symmetric and infinitely long which rises decimal place. Using a desingularization method [2], we
under gravity at a speed U through a tube of width h. The obtain the same estimate of speed. We also investigate the
dimensionless speed of the bubble is known as Froude nature of singularity at the tip of the bubble by studying
number (F) and F 5 U/Ïgh. Here g is the gravitational the asymptotic behavior of the Fourier spectrum of this
acceleration. This bubble models the late stages of pure bubble.
Rayleigh–Taylor instability. The rest of the paper is as laid out as follows. The Section

The flow exterior of the bubble interface in the incom- 2 contains the basic formulation of the problem. In Section
pressible fluid is a potential flow which in theory would 3 we describe the higher order constraint at the tip and
allow the free streamlines at the stagnation point (i.e., tip describe the determination of tip angle from local higher
of the bubble) to separate at any arbitrary angle, ut . In the order derivatives at the tip. In Section 4 we describe the
absence of surface tension, conservation of energy of fluid numerical method. The numerical results are presented in
particles on the bubble interface (i.e., Bernoulli’s equation) Section 5 and are discussed in Section 6. Finally we con-
allows the bubbles, if they exist, to be either round, cusped,

clude in Section 7.
or pointed with ut 5 1208 at the tip (see [4]). There is a
general consensus that these bubbles exist as solutions of
this problem. 2. FORMULATION

The numerical solutions of Vanden-Broeck [9] show a
pointed bubble rising at a speed F 5 0.3577. This is consis- The following formulation after Birkhoff and Carter [1]

has been discussed in more detail in Daripa [4]. With re-tent with a conjecture of Garabedian [5].
There are still some open questions about the pointed spect to the reference frame attached to the bubble, fluid

upstream in a tube of width h has a speed U downward.bubble. The equations of this problem contain F as a free
parameter. Vanden-Broeck [9] uses a Fourier collocation With appropriate normalization (speed by U and time by

(h/U)), far upstream (i.e., x R 2y) q 5 1, u 5 0, wheremethod and determines F numerically by treating F as a
free parameter. He finds F 5 0.3577. He resolves this q is the speed, u is the flow direction, and the stagnation

point (i.e., the apex of the bubble) is located at x 5 y 5problem but with the value of F prescribed a priori. He
attempts to find pointed bubbles for values of F other than 0. It is useful to deal with this problem in an auxiliary

circle plane, us u # 1, which is obtained by a conformal0.3577. The results lead him to suggest that there are no
other pointed bubbles. mapping of the potential plane image of the flow in the

physical plane. This mapping maps the bubble surface ontoIn Section 3 of the paper, we present a higher order
constraint at the tip which contains the selection mecha- upper semi-circle s 5 eia; a [ [0, f], the walls on the real

axis and the flow domain onto the interior of the domainnism of the tip angle 1208 of the pointed bubbles. This
constraint is referred to as ‘‘tip selection criterion’’ or TSC bounded by the upper semi-circle and the real axis. The

image of the apex of the bubble is s 5 i (i.e., a 5 f/2 onin short. The TSC allows computation of tip angle from
local higher order derivatives at the tip. The computed tip us u 5 1) and that of the tail of the bubble is s 5 71.

The complex function t 5 n 2 iu, where n 5 ln q, is anangle should be equal to 1208 for the correct pointed
bubble. analytic function of s within the semi-circle and is continu-

ous and real on the real axis since u 5 0 on the walls.We use the tip angle or equivalently a local higher order
derivative at the tip as a continuation parameter in our An appropriate representation of t(s) in us u # 1 is then

given bynumerical procedure to provide numerical evidence of the
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et(s) 5 (1 1 s 2)c[2ln C(1 2 s 2)]1/3

(1)
cos Sut

2D5
fF 2

3
(q3)bbub50 . (6)

3 [2ln C]21/3 exp SOy
n51

ans 2nD,

For the pointed bubble (ut 5 1208) we have from (6)

where 0 , C , 0.5, c 5 ut/f $ 0 and the Fourier coeffi-
cients, an , are real. A derivative form of the Bernoulli’s fF 2

3
(q3)bbub50 5

1
2

. (7)
equation on the bubble interface in this circle plane is
given by

It is useful to notice from this relation that q 5 O(b2/3)
which is consistent with 1208 angle at the separation point

f tan ae2n dn
da

1
e2n

F 2 cos u 5 0, 0 # a ,
f
2

. (2) since ln q and u are conjugate harmonic functions. There-
fore Eq. (7) is referred to as ‘‘tip selection criterion’’ (or
TSC in short) [4]. Below, we compute left-hand side of (7)

The values of n and u, obtained from solving (2) subject as a function of F and correct values of F are obtained by
to the harmonic conjugacy of n and u according to (1), requiring that the left-hand side of (7) be equal to As ac-
determine the shape of the bubble from integrating cording to (7). In view of relation (6), our procedure uses

the tip angle as a continuation parameter to show the
uniqueness of the pointed bubble. In the process, we also

za 5 2
cot a

fq
eiu, 0 # a # f, (3)

give an improved estimate of the speed of the pointed
bubble and characterize the singularity at its tip.

where z 5 x 1 iy. For partial validation of numerical
4. NUMERICAL METHODsolutions it is useful to note that the exact asymptotic shape

of the bubbles for large x downstream:
Following Birkhoff and Carter [1] and Vanden-Broeck

[9], we used the following Fourier collocation method. We
substituted c 5 Ad for the pointed bubble in (1) and thex 5 2

F 2

2
(1 2 2y)22. (4)

expressions for n, u and their derivatives from (1) into (2).
This gives an equation containing F and an infinite number
of Fourier coefficients an . In order to solve it numerically,This can be obtained from using the conservation of mass
only a finite number of Fourier coefficients are retained(i.e., (1 2 2y)q 5 1 for x large with (x, y) on the interface)
and this equation is applied at N equi-spaced points: aI 5and the Bernoulli’s equation on the interface.
(f/2N)(I 2 1/2), I 5 1, ..., N. This gives a system of NA value of ut used in the construction of numerical solu-
nonlinear equations which is solved by Newton’s iterationstions of Eqs. (1) and (2) need not be the tip angle of the
for N unknowns. Numerical convergence for a choice ofcomputed bubble unless validated by some other criterion.
N is achieved if the values of the unknowns do not changeThis is discussed and exemplified in detail in Daripa [4].
more than 1028 between two successive Newton iterations.Below we provide such a criterion which is then used to
Once this is solved, values of q and u at the mesh pointsprovide numerical evidence of the unique pointed bubble
are obtained from (1) and the bubble is obtained by inte-and an estimate of its speed.
grating (3). Numerical solutions are obtained in this fashion
for a sequence of values of N to test for convergence. The3. TIP SELECTION CRITERION
values of N unknowns and shapes of the bubble profiles
corresponding to various values of N are tested for conver-It is convenient to reformulate the interface condition
gence. Numerical results of the next section fall into two(2) as
categories depending on the choices of N unknowns: (i)
N Fourier coefficients with F prescribed; and (ii) N 2 1
Fourier coefficients and F.d

db
(q3) 5

3
fF 2 tan b cos u, 0 # b ,

f
2

, (5)
We also verified our calculations using a desingulariza-

tion method [2]. In this method, the variable t in (1) is
desingularized by explicitly subtracting off the singulari-where we have used b 5 f/2 2 a. At the tip both, q and

(q3)b , are therefore zero regardless of the nonzero value ties. This allows the use of equi-spaced points: aI 5 (f/
2N)(I 2 1), I 5 1, ..., N, which includes the end points asof ut . It has been shown in Daripa [4] that selection of the

nonzero values of ut is hidden in the next order derivative collocation points, unlike the previous method. This allows
a better resolution of the regions near the apex of theof q3 at the tip. It follows from (5) that
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FIG. 1. Uniqueness of the pointed bubble: values of (fF 2/3)(q3)bb at
the apex of the numerically generated pointed bubbles vs the Froude
number for various values of N. (fF 2/3)(q3)bb 5 0.5 is the theoretical
value at the apex of the pointed bubble.

bubble and is likely to generate more accurate solution.
Results obtained with this method are also presented in
the next section.

5. NUMERICAL RESULTS

5.1. Uniqueness

In Fig. 1 we plot numerical values of (fF 2/3)(q3)bbub50

against F for various choices of N. Each of these curves
intersects the line: (fF 2/3)(q3)bbub50 5 0.5 exactly at one FIG. 2. The pointed bubble with F 5 0.357827: (a) convergence of
value. As N R y, the curve, F versus (fF3/3)(q3)bbub50 , bubble profiles; (b) magnified view of (a) near the apex; (c) comparison

of theoretical and numerical shapes of tails of the bubbles, N 5 251; (d)becomes steeper with increasing N crossing F axis at exactly
behavior of Fourier coefficients, N 5 251.one point. An extrapolation suggests that this point of

intersection converges to a value F p 0.35784 as N R y
which is correct up to at least four decimal places. This

places. The following table shows the speed of the bubbleleads us to conclude that there is only one pointed bubble
computed by this desingularization method for various dis-as solutions of the mathematical equations and that this
cretizations which further confirms our previous estimatebubble rises at a speed F 5 0.35784 which seems to be
of the speed.accurate up to at least four places. In Fig. 2 we show the

pointed bubble rising at speed F 5 0.357827 when N 5 251.
5.3. Singularity

5.2. Speed Characterization of the nature of the singularity at the
tip of the pointed bubble is based on the asymptotic behav-An accurate estimate of the speed, Fp , of the pointed

bubble should be obtainable by cross-validating the results
by different numerical methods. Therefore we computed

TABLE Ithe speed of this bubble in three different ways. We did
not prescribe the value of F in the above numerical proce- F vs N in the

Desingularization Proceduredure. We treated this as a free parameter and computed
its value by Newton’s iteration. Our results suggest that

N Festimate of the speed given above is correct. It should be
pointed out that speed of the pointed bubble has been 16 0.3584
previously estimated to be 0.3577 using the same procedure 32 0.3580

64 0.3578[8]. The numbers in Table I in [8] are an increasing se-
128 0.3578quence of numbers and our improved estimate is consistent
256 0.3578with the data in Table I of [8].
512 0.3578

The value of speed computed by the desingularization 1024 0.3578
method [2] is found to be insensitive up to four decimal
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that for each choice of N, there is only one window in F
with no oscillations in the spectrum. This is shown in Fig.
4b. Figure 4b shows that this window size shrinks to zero
with increasing N. We find that minimum and maximum
values of F of this window, denoted respectively by Fmin

and Fmax , become equal up to five decimal places for values
of N . 121. Therefore we show the plot of Fmin versus
1/N in Fig. 4c. (Plot of Fmax versus 1/N collapses onto the
same curve within the resolution of the plots for N . 121.)
It makes sense to estimate the speed of this unique pointed
bubble with monotonic decay rate of its Fourier coefficients

FIG. 3. Log–Log plot of the Fourier coefficients’ amplitudes for the by extrapolating the plot in Fig. 4c for N R y. This bubble
computed bubble in Fig. 2a. The straight line fit for high wave number has a speed F 5 0.5784 which is correct up to four decimal
modes has slope 21.35. places as seen in this figure. Since this estimate is the same

as our previous estimates of the correct solution,
we conjecture that Fourier coefficients of the unique
pointed bubble decays monotonically. The Fourier co-ior of the Fourier coefficients an for this bubble. Plots of
efficients for the bubble shown in Fig. 2 decays mono-lnuanu versus ln n in Fig. 3 for the computed bubble in Fig.
tonically.2a suggests that an p (n21.35) as n R y for this pointed

bubble. This estimate may be useful in the study of time
dependent Rayleigh–Taylor instability.

6. DISCUSSION

The Fig. 1 clearly suggests that numerically generated
bubbles for values of F ? Fp are not admissible pointed
bubble solutions of Eqs. (1) and (2). These pointed bubbles
for values of F ? Fp are artifacts of finite resolution calcula-
tions. However, it would seem from Fig. 1 that the plots
for various N in this figure may approach the line (fF 2/
3)(q3)bbub50 5 0 for F , Fp and (fF 2/3)(q3)bbub50 5 1 for
F . Fp . If this is the case, then TSC implies that these
bubbles correspond to round bubbles for F , Fp and cusped
bubbles for F . Fp . This is consistent with the finding of
Vanden-Broeck [9]. However, it is worth pointing out
that our inferences here about the round and cusped
bubbles from Fig. 1 is too far fetched and need further
careful study. We do not pursue these studies here any
further.

The fact that there are only round and cusped bubbles
as solutions of Eqs. (1) and (2) for values of F ? Fp implies
that solutions in Fig. 1 for these values of F have been
generated with ut ? ua , where ua is the correct tip angle.
Fourier coefficients of the such bubbles with correct F and
incorrect values for ut in [4] were found to alternate in sign
for high wave number modes and the origin of this generic
behavior was traced in the logarithmic singularity at the
tip of the bubbles. It seems logical that Fourier coefficients
for these bubbles will also show similar behavior. Figure
4(a) shows this behavior.

FIG. 4. Behavior of the Fourier spectrum of the pointed bubbles: (a)In Fig. 4a, we plot the frequency, n, of oscillations in
percentage of oscillations of Fourier coefficients as a function of the

the Fourier spectrum, against F over an interval including Froude number for various values of N; (b) magnified view of (a) in the
Fp for N 5 31, 121, and 151. A careful study of the magnified sharp transition region; (c) minimum value of the Froude number of

pointed bubbles with 100% oscillations of Fourier coefficients vs (1/N).view of Fig. 4a near the region of sharp transition shows
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